

B.Sc. in Radiation Biology 4 Years (8 Semesters)

Overview: B.Sc. in Radiation Biology is an undergraduate program that explores the biological effects of ionizing radiation on living organisms. This program focuses on understanding the interactions between radiation and biological systems, particularly at the cellular and molecular levels. Students learn how radiation can affect DNA, cellular functions, and tissue health, as well as the role of radiation in medicine, environmental sciences, and cancer research. The program also covers radiation safety, regulations, and the therapeutic applications of radiation in medical treatments, such as radiation therapy for cancer patients.

The knowledge gained through this program is essential for careers in radiation therapy, nuclear medicine, environmental protection, research, and healthcare industries. Graduates can work in medical settings, research institutions, radiation safety and protection sectors, as well as nuclear industries.

Affiliated Institution: School of Medical Sciences and Technology, Malla Reddy Vishwavidyapeeth (Deemed to be University)** The minimum eligibility for B.Sc. Radiation Biology is a pass in 10+2 with at least 50% marks in Physics, Chemistry and Biology from a recognized board (CBSE/ISC/PUC) or equivalent

Key Highlights:

- Understanding Radiation Effects: The program provides a comprehensive understanding of the biological effects of radiation on cells, tissues, and DNA.
- Interdisciplinary Curriculum: Students receive training in molecular biology, physics, and medical applications of radiation.
- Research Opportunities: Students are encouraged to participate in research projects related to radiation biology, cancer therapy, radioprotection, and the environmental impact of radiation.
- Radiation Safety Training: The program includes training in radiation protection standards, safety protocols, and regulatory practices in radiation use.
- Career Prospects: Graduates are prepared to work in hospitals, nuclear power plants, research laboratories, and public health sectors, where radiation plays a crucial role.

Course Curriculum:

The B.Sc. in Radiation Biology is typically a three-year program, with an emphasis on both theoretical knowledge and practical laboratory experience.

Year 1:

- > Introduction to Radiation Biology
- > General Biology and Cell Biology
- > Principles of Radiation Physics

- > Biochemistry and Molecular Biology
- > Introduction to Medical Physics
- > Human Physiology
- > Introduction to Radiation Protection

Year 2:

- > Radiation Interaction with Matter
- > Molecular Mechanisms of Radiation Damage
- > Radiation Oncology and Radiotherapy
- Radiation Effects on Human Health
- Environmental Radiation and Pollution
- > Radiobiology of Cancer
- Radiation Detection and Measurement Techniques
- > Radiation Protection and Safety

Year 3:

- > Radiation Biology in Cancer Treatment
- > Advanced Radiation Toxicology
- > Radiation and DNA Damage Repair
- > Radiation-Induced Mutagenesis
- > Environmental Impact of Radiation
- > Radiological Protection in Industry
- > Research Project or Internship in Radiation Biology

Additional/Optional Modules:

- Radiation and the Immune System: Understanding the effects of radiation on immune function.
- Nuclear Medicine: Exploring the use of radioactive isotopes in medical diagnostics and treatment.
- Radiation Therapy in Oncology: In-depth exploration of radiation therapy techniques used in cancer treatment.
- Space Radiation Biology: Studying the effects of space radiation on human health for astronauts.
- Medical Imaging Techniques: Learning about medical imaging technologies that use radiation, such as X-rays, CT scans, and PET scans.

Career and Academic Opportunities:

Career Opportunities:

Graduates of B.Sc. in Radiation Biology can pursue a wide range of careers in healthcare, research, industry, and environmental sectors. Some potential career paths include:

Radiation Safety Officer: Ensuring radiation safety protocols are followed in hospitals, research labs, and nuclear facilities.

- Radiation Biologist/Researcher: Conducting research on the biological effects of radiation, developing new radiation therapies, and improving safety standards.
- Radiation Therapist: Working in oncology departments, administering radiation therapy to cancer patients, and collaborating with medical professionals for treatment planning.
- Medical Physicist: Applying physics principles to radiation medicine, such as ensuring accurate dose delivery in radiation therapy.
- Nuclear Medicine Technologist: Working with radioactive materials in medical imaging, diagnostics, and therapy.
- Environmental Radiation Specialist: Managing radiation pollution, monitoring radiation levels, and ensuring compliance with environmental safety standards.
- Radiation Protection Specialist: Ensuring compliance with radiation protection regulations in industrial settings, including nuclear power plants and research facilities.
- Radiological Health Officer: Working in public health agencies to monitor and mitigate the effects of radiation exposure on communities.

Academic Opportunities:

Graduates can pursue higher education to specialize further in areas of radiation biology, medical physics, or radiation oncology:

- Master's in Radiation Biology: A postgraduate program focusing on advanced topics in radiation effects, therapeutic applications, and radiation safety.
- Master's in Medical Physics: Specializing in the use of radiation in medicine, including the development of radiation therapy techniques and radiation safety protocols.
- Master's in Nuclear Medicine: Focusing on the use of radioactive isotopes for diagnosis and treatment.
- Master's in Environmental Science (Radiation Focus): Studying the environmental impacts of radiation and learning about radiation protection and decontamination methods.
- Master's in Oncology: Specializing in cancer biology and radiation therapy for cancer treatment.

For those interested in research or academia, pursuing a **Ph.D. in Radiation Biology**, **Medical Physics**, or **Radiation Oncology** can lead to advanced research positions in universities or specialized research institutions.

Professional Opportunities:

- Certified Radiation Protection Professional (RPP): Certification for professionals ensuring safety standards in environments where radiation is used.
- Radiation Safety Officer Certification: A certification that enables professionals to oversee radiation safety protocols in hospitals, clinics, and laboratories.
- Medical Radiation Technologist Certification: For professionals working in clinical settings with radiation-based medical imaging technologies.

- Certified Medical Physicist (CMP): A certification for those working in medical physics, particularly in radiation therapy and diagnostic radiology.
- Nuclear Regulatory Commission (NRC) Certification: A certification for professionals working with nuclear materials, ensuring compliance with regulatory guidelines.

Higher Education and Research Prospects:

- Research Opportunities: Graduates can engage in research to better understand radiation's effects on biological systems, developing new radiation therapies, or investigating environmental impacts of radiation. Research opportunities are available in academic institutions, government agencies, and private sector labs.
- Postgraduate Studies: Graduates can pursue Master's programs in specialized fields like Medical Physics, Radiation Oncology, or Radiation Protection to gain deeper knowledge and practical skills.
- Ph.D. Programs: Those interested in academic research can pursue a Ph.D. in Radiation Biology, Medical Physics, or Cancer Research, focusing on radiation therapies, diagnostic techniques, or environmental radiation protection.
- Interdisciplinary Research: Graduates may contribute to interdisciplinary projects that involve radiation in cancer treatment, environmental monitoring, space exploration, and emerging medical technologies like proton therapy.

Conclusion:

The **B.Sc. in Radiation Biology** is an interdisciplinary program designed for students interested in the biological and medical applications of radiation. The increasing use of radiation in medicine, as well as the need for safety and regulation in environments that use radiation, means that this field offers diverse career opportunities.

Graduates can contribute to advancements in medical diagnostics, therapeutic radiation, environmental protection, and public health. Additionally, the program offers numerous opportunities for higher education and research, allowing students to specialize in emerging fields like radiation therapy, nuclear medicine, and radiation safety.

With the growing demand for professionals in radiation-related fields, the B.Sc. in Radiation Biology is an excellent choice for students interested in the intersection of biology, physics, and medicine.

Labs

1. Radiation Physics & Dosimetry Lab

- > **Purpose**: Understanding radiation types, interactions, and dose measurements.
- > Equipment & Facilities:
 - ✓ Geiger-Müller (GM) counters
 - ✓ Ionization chambers

- ✓ Thermoluminescent dosimeters (TLDs)
- ✓ Scintillation detectors
- ✓ X-ray and gamma-ray sources
- ✓ Radiation shielding materials

2. Radiobiology & Cellular Effects Lab

- > **Purpose**: Studying radiation effects on biological cells and tissues.
- > Equipment & Facilities:
 - ✓ Cell culture incubators
 - ✓ Microscopes for cytogenetic analysis
 - ✓ Comet assay setup (for DNA damage assessment)
 - ✓ Flow cytometers for apoptosis studies
 - ✓ Gamma irradiation chamber for biological samples

3. Radiation Therapy & Medical Physics Lab

- > **Purpose**: Understanding therapeutic radiation applications in cancer treatment.
- > Equipment & Facilities:
 - ✓ Linear accelerator (LINAC) simulator (if available)
 - ✓ Brachytherapy applicators
 - ✓ Radiation therapy planning software
 - ✓ Phantoms for dose distribution analysis
 - ✓ Film dosimetry kits

4. Radiation Protection & Safety Lab

- > **Purpose**: Training in radiation shielding, monitoring, and regulatory compliance.
- > Equipment & Facilities:
 - ✓ Lead aprons and radiation protection barriers
 - ✓ Personal dosimeters (TLD badges, film badges)
 - ✓ Radiation survey meters
 - ✓ ALARA (As Low As Reasonably Achievable) compliance training kits
 - ✓ Controlled radiation exposure chambers

5. Nuclear Medicine & Imaging Lab

- > **Purpose**: Learning diagnostic applications of radiation in medicine.
- > Equipment & Facilities:
 - ✓ Gamma camera and PET scanner models
 - ✓ Radioisotope preparation units
 - ✓ Radionuclide dose calibrators
 - ✓ SPECT imaging simulation software
 - ✓ Radiopharmaceutical handling safety equipment

6. Environmental & Industrial Radiation Lab

- > **Purpose**: Assessing natural and artificial radiation exposure in the environment.
- > Equipment & Facilities:
 - ✓ Radon detectors
 - ✓ Environmental gamma spectrometry units
 - ✓ Contamination monitoring tools
 - ✓ Radiation shielding material testing kits
 - ✓ Industrial radiography training units

7. Radiation Chemistry & Molecular Effects Lab

- > **Purpose**: Studying radiation-induced chemical and genetic changes.
- > Equipment & Facilities:
 - ✓ Spectrophotometers for radiation-induced free radical detection
 - ✓ DNA damage assessment kits
 - ✓ Electron paramagnetic resonance (EPR) spectrometry
 - ✓ Pulse radiolysis setup (if available)

PROGRAM OUTCOMES (POs)

РО	Program Outcomes
	Fundamental Knowledge in Radiation Biology
PO-1	Develop a strong understanding of radiation physics, radiation interactions with biological systems, and radiation safety principles to ensure effective application in medical and research fields.
	Radiation Protection and Safety
PO-2	Apply radiation protection protocols, regulatory guidelines, and best practices to minimize radiation exposure risks to patients, personnel, and the environment in clinical and industrial settings.
	Technical and Analytical Skills
PO-3	Utilize modern radiation detection, measurement, and imaging technologies for diagnosing and treating diseases while ensuring accuracy, precision, and quality assurance in radiation- based procedures.
	Research and Innovation in Radiation Sciences
PO-4	Engage in scientific research and innovation related to radiation biology, including radiotherapy, radiobiology, and radiation genetics, to contribute to advancements in healthcare and biotechnology.
	Ethical and Professional Responsibility
PO-5	Demonstrate ethical responsibility, professional conduct, and effective communication in multidisciplinary teams while addressing societal and environmental concerns related to radiation sciences.

COURSE STRUCTURE – B.Sc. Radiation Biology

Semester 1

SI. No	l. Broad Course		road Course Name of the Subject/Practical	Contact hours/week			Credits
110.	Category	Couc		L	Т	Р	
1.		BSRB101	Fundamentals of Radiation Biology	2	1	0	3
2.		BSRB102	Principles of Radiation Physics	2	1	0	3
3.	- Major (Core)	BSRB103	Cellular & Molecular Effects of Radiation	2	1	0	3
4.		BSRB104	Introduction to Radiation Safety & Protection	1	0	2	2

Minor Select any two minor courses, each worth 2 credits, for a maximum of 4 credits per semester1. Basic Human Anatomy & Physiology 2. Radiation Chemistry &Free Radical Biology11103. Medical Imaging & Radiological Techniques1. Radiation & Cancer Biology 5. Environmental Radiation & Public Health Courses111106.Skill Enhancement CoursesBSRB1051. Handling & Calibration of Radiation Detectors00227.Skill Enhancement Courses1. English Communication Skills 2. Medical Ethics & Regulatory Guidelines in Radiation Biology00228.Value-Added Courses1. Radiation & Its Impact on Human Health 2. Basics of Nuclear Medicine & PET Imaging00221051020	Total Contact Hours25					_		
Minor Select any two minor courses, each worth 2 credits, for a maximum of 4 credits per semester1. Basic Human Anatomy & Physiology 2. Radiation Chemistry &Free Radical Biology11103. Medical Imaging & Radiological Techniques111111116.Skill Enhancement CoursesBSRB10611 <th colspan="5">Total 10 5 10 2</th> <th>20</th>	Total 10 5 10 2					20		
Minor Select any two ninor courses, each worth 2 credits, for a maximum of 4 Credits per semester1. Basic Human Anatomy & Physiology 2. Radiation Chemistry & Free Radical Biology1. Here H1. Here H1. Here H4. Radiation Chemistry & Free Radical Biology1. Here H4. Radiation Chemistry & Free Radical Biology1. Here H1. Here H4. Here H4. Here H4. Radiation & Cancer Biology S. Environmental Radiation & Public Health Detectors1. Here H1. Here H4. Here H <th< td=""><td>8.</td><td>Value-Added Courses</td><td>BSRB108</td><td> Radiation & Its Impact on Human Health Basics of Nuclear Medicine & PET Imaging </td><td>1</td><td>0</td><td>2</td><td>2</td></th<>	8.	Value-Added Courses	BSRB108	 Radiation & Its Impact on Human Health Basics of Nuclear Medicine & PET Imaging 	1	0	2	2
Minor Select any two minor courses, each worth 2 credits, for a maximum of 4 credits, per 	7.	Ability Enhancement Courses	BSRB107	 English Communication Skills Medical Ethics & Regulatory Guidelines in Radiation Biology 	0	0	2	1
Minor Select any two minor courses, each worth 2 credits, for a maximum of 4 credits per semester1. Basic Human Anatomy & Physiology 2. Radiation Chemistry &Free Radical Biology11043. Medical Imaging & Radiological 	6.	Skill Enhancement Courses	BSRB106	1. Francing & Calibration of Radiation Detectors 2. Fundamentals of Radiation Therapy Equipment	0	0	2	2
	5.	Minor Select any two minor courses, each worth 2 credits, for a maximum of 4 credits per semester	BSRB105	 Basic Human Anatomy & Physiology Radiation Chemistry & Free Radical Biology Medical Imaging & Radiological Techniques Radiation & Cancer Biology Environmental Radiation & Public Health 	1	1	0	4

Course Outcomes for B.Sc. Radiation Biology MAJOR- Fundamentals of Radiation Biology

Sr. No.	Course Outcome	Description
1	Understand the Basics of Radiation Biology	Define radiation biology and explain its importance in understanding the biological effects of ionizing radiation on living organisms at cellular, tissue, and organism levels.
2	Study Radiation Interaction with Biological Systems	Learn how radiation interacts with biological systems, focusing on the ionization and excitation of molecules and their consequences on cells, tissues, and organs.

Sr. No.	Course Outcome	Description
3	Explore the Types of Ionizing Radiation	Understand the different types of ionizing radiation (alpha, beta, gamma, X-rays) and how each affects biological tissues differently.
4	Learn About the Biological Effects of Radiation at Different Doses	Examine the effects of radiation exposure at various dose levels, including acute and chronic biological responses, and the threshold levels for tissue damage.
5	Investigate DNA Damage and Repair Mechanisms	Study how ionizing radiation causes DNA damage (e.g., strand breaks, base damage) and the cellular repair mechanisms that help mitigate the damage.
6	Explore the Cellular and Tissue- Level Responses to Radiation	Learn about the cellular responses to radiation, including apoptosis, cell cycle arrest, and the impact on tissue regeneration or dysfunction.
7	Understand th <mark>e R</mark> ole of R <mark>adiation</mark> in Mutagenesis and Carcinogenesis	Examine the role of radiation-induced mutations and their potential to lead to carcinogenesis, focusing on genetic mutations and the development of cancer.
8	Apply Knowledge of Radiation Biology in Medical and Environmental Fields	Understand how radiation biology is applied in medical practices such as radiotherapy, radiology, and environmental health studies to assess and mitigate radiation risks.

Course Outcomes for B.Sc. Radiation Biology MAJOR- Principles of Radiation Physics

Sr. No.	Course Outcome	Description
1	Understand the Basics of Radiation Physics	Define radiation physics and explain the fundamental principles of ionizing radiation, including the nature of radiation, its properties, and interactions with matter.
2	Study the Different Types of Radiation	Learn about the various types of radiation (alpha, beta, gamma, X-rays) and their physical properties, including energy, penetration abilities, and ionizing capabilities.
3	Explore Radiation-Matter Interactions	Understand the processes that occur when radiation interacts with matter, such as ionization, excitation, and energy deposition in biological and non-biological materials.

Sr. No.	Course Outcome	Description
4	Understand the Concept of Absorbed Dose and Dose Measurement	Learn how radiation dose is measured and calculated, including concepts such as absorbed dose, equivalent dose, and effective dose in radiation protection and safety.
5	Study the Relationship Between Energy, Wavelength, and Frequency	Understand the relationship between the energy, wavelength, and frequency of different types of radiation, and how these properties affect their interactions with materials.
6	Apply the Concepts of Radiation in Medical Applications	Explore the applications of radiation physics in medicine, including diagnostic imaging (X-ray, CT scans) and therapeutic uses (radiotherapy).
7	Investigate the Role of Shielding in Radiation Protection	Study the principles of radiation shielding, including how different materials (e.g., lead, concrete) can attenuate or block radiation to ensure safety in clinical and environmental settings.
8	Explore Radi <mark>ation</mark> Detecti <mark>on</mark> and Measurement Techniques	Learn about the various tools and techniques used to detect and measure ionizing radiation, such as scintillation counters, dosimeters, and ionization chambers.

Course Outcomes for B.Sc. Radiation Biology MAJOR- Cellular & Molecular Effects of Radiation

Sr. No.	Course Outcome	Description
1	Understand the Basic Cellular and Molecular Effects of Radiation	Define the cellular and molecular effects of ionizing radiation, including DNA damage, cell death, mutation, and the role of molecular signaling in response to radiation.
2	Explore DNA Damage Induced by Radiation	Learn about the various types of DNA damage caused by radiation, including single- and double-strand breaks, base damage, and cross-linking, and how these lead to mutations.
3	Investigate the Molecular Mechanisms of Radiation Repair	Understand the repair mechanisms activated in cells to fix radiation-induced DNA damage, such as base excision repair, homologous recombination, and non-homologous end joining.

Sr. No.	Course Outcome	Description
4	Study the Role of Cell Cycle Arrest in Radiation Response	Explore how radiation triggers cell cycle checkpoints, leading to cell cycle arrest, allowing cells time to repair damage before proceeding to cell division.
5	Examine Radiation-Induced Apoptosis and Necrosis	Investigate the pathways leading to programmed cell death (apoptosis) and necrosis in response to severe radiation damage, and how these processes impact tissues and organs.
6	Understand the Molecular Mechanisms of Radiation- Induced Carcinogenesis	Study the molecular changes in cells, such as mutations and genomic instability that lead to cancer following exposure to ionizing radiation.
7	Learn the Impact of Radiation on Cellular Signaling Pathways	Explore how radiation influences cellular signaling pathways (e.g., PI3K/Akt, p53, NF-kB) and how these alterations affect cell survival, repair, and transformation.
8	Apply Knowledge of Radiation Effects to Clinical and Environmental Settings	Investigate how understanding cellular and molecular radiation effects is applied in medical treatments (radiotherapy) and environmental monitoring (radiation exposure risk).

Course Outcomes for B.Sc. Radiation Biology MAJOR- Introduction to Radiation Safety & Protection

Sr. No.	Course Outcome	Description
1	Understand the Principles of Radiation Safety	Define the principles of radiation safety, including the concepts of time, distance, and shielding, and explain how they are used to minimize radiation exposure.
2	Study the Regulatory Frameworks and Safety Standards	Learn about the key regulations and standards for radiation safety set by organizations such as the International Commission on Radiological Protection (ICRP) and the Nuclear Regulatory Commission (NRC).
3	Explore Radiation Protection Techniques in Medical Settings	Understand how radiation protection is implemented in healthcare settings, including shielding, dosimetry, and safety protocols for radiology, radiotherapy, and diagnostic imaging.

Sr. No.	Course Outcome	Description
4	Learn About Personal Protective Equipment (PPE) for Radiation Exposure	Study the types of personal protective equipment (PPE) used to protect workers and patients from radiation exposure, including lead aprons, gloves, and eye protection.
5	Investigate Radiation Monitoring and Dosimetry Techniques	Learn how radiation exposure is monitored using dosimeters and other devices, and understand the concept of dose limits for both workers and the public.
6	Examine the Role of ALARA (As Low As Reasonably Achievable) in Radiation Protection	Understand the ALARA principle and its importance in reducing radiation exposure to the lowest possible levels while maintaining effectiveness in medical or industrial applications.
7	Apply Radiation Safety Knowledge to Clinical and Environmental Settings	Investigate how radiation safety principles are applied in real- world scenarios, such as in hospitals, research labs, and environmental monitoring to prevent overexposure.
8	Understand Emergency Procedures for Radiation Incidents	Learn the appropriate emergency procedures for handling radiation accidents or incidents, including containment, decontamination, and exposure management.

Course outcomes for B.Sc. Radiation Biology MINOR-Basic Human Anatomy & Physiology

Sr. No.	Course Outcome	Description
1	Understand the Levels of Structural Organization in the Human Body	Describe the structural organization of the human body, from cells to tissues, organs, and organ systems, and explain how they work together to maintain homeostasis.
2	Identify the Major Systems of the Human Body	Identify and describe the major systems of the human body, including the cardiovascular, respiratory, digestive, nervous, musculoskeletal, and endocrine systems.
3	Explain the Functions of the Cardiovascular and Respiratory Systems	Understand the anatomy and physiology of the cardiovascular and respiratory systems, focusing on blood circulation, gas exchange, and oxygen delivery to tissues.
4	Study the Digestive System and Nutrient Absorption	Learn the structure and function of the digestive system, and explain the processes of digestion, nutrient absorption, and the role of the gastrointestinal system in metabolism.

Sr. No.	Course Outcome	Description
5	Describe the Musculoskeletal System and Movement Mechanisms	Study the anatomy and physiology of bones, muscles, and joints, and understand how they work together to facilitate body movement and support.
6	Understand the Nervous System and Its Role in Body Control	Explore the structure and function of the nervous system, including the brain, spinal cord, and peripheral nerves, and understand how it regulates and coordinates bodily functions.
7	Investigate the Endocrine System and Hormonal Regulation	Learn about the major endocrine glands and the hormones they secrete, and understand their role in regulating metabolism, growth, and overall body function.
8	Explore the Renal System and Fluid Balance	Understand the structure and function of the kidneys and urinary system, and how they maintain fluid, electrolyte balance, and excrete waste products.
9	Analyze the Immune System and Body Defense Mechanisms	Study the anatomy of the immune system, including lymphatic tissues, and understand the physiological responses involved in defending the body from infections and diseases.
10	Apply Knowledge of Anatomy & Physiology in Clinical Settings	Integrate understanding of human anatomy and physiology to recognize signs and symptoms of diseases and apply this knowledge in clinical diagnostics and treatments.

Course outcomes for B.Sc. Radiation Biology MINOR-Radiation Chemistry & Free Radical Biology

Sr. No.	Course Outcome	Description	
1	Understand the Basics of Radiation Chemistry	Define radiation chemistry and explain the fundamental principles behind chemical reactions induced by ionizing radiation, including the formation of free radicals and their reactivity.	
2	Study the Formation of Free Radicals in Biological Systems	Learn about the generation of free radicals and reactive oxygen species (ROS) when biological systems are exposed ionizing radiation, and how these species interact with cellu components.	
3	Explore the Mechanisms of Radiation-Induced Chemical Reactions	Examine the processes involved in radiation-induced chemical changes, including ionization, excitation, and the subsequent formation of reactive intermediates and free radicals.	

Sr. No.	Course Outcome	Description
4	Understand the Role of Free Radicals in Cellular Damage	Study the impact of free radicals and ROS on biomolecules such as lipids, proteins, and DNA, and understand their role in cellular damage and dysfunction.
5	Investigate the Molecular Mechanisms of Radiation- Induced DNA Damage	Explore how free radicals and other reactive species cause DNA damage, including single- and double-strand breaks, base modifications, and cross-linking.
6	Learn about the Antioxidant Defense Mechanisms in Cells	Understand the cellular defense mechanisms against oxidative damage, including the role of antioxidants (e.g., glutathione, superoxide dismutase) and DNA repair systems.
7	Explore the Biological Consequences of Radiation- Induced Free Radical Damage	Investigate how radiation-induced free radical damage can lead to cellular processes such as apoptosis, senescence, mutation, and carcinogenesis.
8	Apply Knowledge of Free Radical Biology in Radiation Protection	Apply the principles of free radical biology to understand strategies for mitigating radiation damage, including the use of radio protective agents and radiation shielding.
9	Examine the Role of Free Radicals in Radiation Therapy	Study the role of free radicals in the therapeutic use of radiation, including their role in cell killing during radiotherapy and strategies to enhance therapeutic outcomes.

Course outcomes for B.Sc. Radiation Biology MINOR-Medical Imaging & Radiological Techniques

Sr. No.	Course Outcome	Description
1	Understand the Fundamentals of Medical Imaging Techniques	Define medical imaging and understand the basic principles behind common imaging techniques such as X-ray, CT scans, MRI, and ultrasound.
2	Study the Principles and Applications of X-ray and CT Imaging	Learn how X-ray and computed tomography (CT) scans work, including the concepts of image formation, contrast, resolution, and their clinical applications in diagnosis.
3	Explore Magnetic Resonance Imaging (MRI)	Understand the principles behind MRI, including the role of magnetic fields and radio waves in producing high-resolution images of soft tissues, and its medical applications.

Sr. No.	Course Outcome	Description
4	Investigate Ultrasound Imaging Techniques	Study the basic principles of ultrasound, including the use of high-frequency sound waves to generate real-time images, and its clinical applications in diagnostics and treatment monitoring.
5	Learn the Principles of Nuclear Medicine and PET Scanning	Understand how nuclear medicine techniques, including positron emission tomography (PET), work by using radioactive tracers to visualize metabolic processes in the body.
6	Explore Radiation Safety in Medical Imaging	Study the safety protocols for minimizing radiation exposure during diagnostic imaging procedures, including techniques for patient and staff protection.
7	Analyze the Role of Imaging in Disease Diagnosis and Treatment Planning	Learn how medical imaging plays a critical role in detecting diseases, planning treatments (e.g., surgery, radiotherapy), and monitoring patient progress.
8	Understand the Role of Contrast Agents in Imaging Techniques	Learn about the different types of contrast agents used in imaging procedures, their mechanisms of action, and how they improve image quality for specific diagnostic purposes.
9	Apply Knowledge of Medical Imaging in Clinical Practice	Apply the knowledge of various imaging modalities to real- world clinical cases, and understand how to choose the appropriate imaging technique based on patient symptoms and conditions.

Course outcomes for **B.Sc.** Radiation Biology MINOR-Radiation & Cancer Biology

<mark>Sr.</mark> No.	Course Outcome	Description
1	Understand the Fundamentals of Radiation and Cancer Biology	Define the key principles of radiation biology and cancer biology, and explain the connection between radiation exposure and the initiation of cancer.
2	Study the Molecular Mechanisms of Radiation-Induced Carcinogenesis	Learn about the molecular changes (such as DNA mutations, chromosomal aberrations) that occur due to radiation exposure, leading to carcinogenesis.
3	Explore the Biological Effects of Radiation on Normal and Cancer Cells	Compare and contrast the effects of radiation on normal healthy cells and cancer cells, focusing on cellular responses to DNA damage, repair, and apoptosis.

Sr. No.	Course Outcome	Description
4	Investigate Radiation-Induced Genetic Mutations and Tumorigenesis	Study how radiation causes genetic mutations and genomic instability, and understand the mechanisms through which these mutations lead to tumor formation.
5	Learn about the Role of Tumor Microenvironment in Radiation Response	Understand the impact of the tumor microenvironment (e.g., oxygenation, extracellular matrix, immune cells) on radiation response and cancer progression.
6	Study the Impact of Radiation on Cancer Therapy and Resistance	Explore how radiation therapy affects cancer cells, the development of resistance mechanisms, and strategies to overcome radiation resistance in cancer treatments.
7	Examine the Role of Radiation in Combination Cancer Therapies	Investigate the synergistic effects of combining radiation therapy with other cancer treatments, such as chemotherapy, immunotherapy, and targeted therapy.
8	Apply Knowledge of Radiation & Cancer Biology in Cancer Prevention	Understand how knowledge of radiation-induced carcinogenesis can be used in the development of preventive strategies, including radiation protection and early detection.
9	Understand the Mechanisms of Radiation-Induced DNA Repair and Its Implications in Cancer	Learn about the DNA repair pathways activated by radiation, such as homologous recombination and non- homologous end joining, and their implications in cancer progression and therapy.

Course outcomes for B.Sc. Radiation Biology MINOR-Environmental Radiation & Public Health

Sr. No.	Course Outcome	Description	
1	Understand the Basics of Environmental Radiation	Define environmental radiation and explain the sources, types, and distribution of naturally occurring and anthropogenic radiation in the environment.	
2	Study the Impact of Radiation on Ecosystems and the Environment	Explore how radiation affects ecosystems, soil, water, air, and living organisms, with a focus on both short-term and long-term environmental impacts.	

Sr. No.	Course Outcome	Description		
3	Examine the Public Health Implications of Radiation Exposure	Learn about the health risks associated with exposure to environmental radiation, including cancer, genetic mutations, and other radiation-induced diseases.		
4	Investigate Radiation Exposure Pathways in the Environment	Study the pathways through which radiation can reach humans and other organisms (e.g., ingestion, inhalation, and direct exposure) and the associated risks.		
5	Explore the Role of Radiation Protection in Public Health	Understand the principles of radiation protection in the context of public health, including dose limits, risk assessment, and safety guidelines to reduce radiation exposure.		
6	Study the Effects of Nuclear Accidents and Radiation Emergencies	Examine the public health consequences of nuclear accidents (e.g., Chernobyl, Fukushima) and radiation emergencies, including radiation exposure, contamination, and health responses.		
7	Learn about Radiation Surveillance and Environmental Monitoring	Understand the techniques and technologies used to monitor radiation levels in the environment, including air, water, soil, and food, and their role in public health safety.		
8	Analyze Risk Assessment and Epidemiology of Radiation Exposure	Study methods used to assess the risks of radiation exposure to populations, including epidemiological studies, risk models, and public health strategies.		
9	Develop Public Health Strategies for Managing Radiation Risks	Apply knowledge to design public health strategies and policies aimed at minimizing radiation exposure and protecting communities, including education, regulation, and mitigation.		
10	Examine the Global Standards and Regulations on Environmental Radiation	Learn about international and national regulations and standards set by organizations like the ICRP and WHO to manage environmental radiation and safeguard public health.		

Program Details

- Duration:4Years (8 Semesters)
- **>** Total Credits: 160–180 credits
- > Total Teaching & Training Hours: 6,000–6,500 hours
- > Mode: Classroom, Laboratory, Clinical Training, and Internship
- Assessment: Continuous Internal Assessment (CIA), Semester-End Examinations, Practical Examinations, Clinical Case Presentations, and Research Project
- > Internship & Research: One-Year Clinical Internship (Final Year)

Total Hours Distribution

- **Theory Classes** 2,500–2,800 hours
- > **Practical & Laboratory Training** 1,500–1,800 hours
- > Clinical Training & Internship 1,000–1,200 hours
- **Research & Dissertation** 300–500 hours

Assessment Methods

Assessment Component	Weightage (%)	Details	
Continuous Internal Assessment (CIA)	40%	Includes internal exams, assignments, presentations, case studies, and practical performance	
End-Semester Examination (ESE)	60%	Divided into theory (40%) and practical (20%)	
Mid-Semester Exams	20% (Part of CIA)	Two internal tests per semester	
Assignments & Case Studies	5% (Part of CIA)	Research-based assignments, patient case studies, and literature reviews	
Seminars & Presentations	5% (Part of CIA)	Oral/poster presentations on diabetes management and treatment approaches	
Practical Performance & Clinical Evaluation	5% (Part of CI <mark>A</mark>)	Skill-based assessments in diabetic labs and clinical settings	
Attendance & Partici <mark>pation</mark>	5% (Part of CIA)	Regularity in theory & practical sessions	
Theory Examination (Final)	40% (Part of ESE)	Structured written paper covering subject knowledge	
Practical Examination (Final)	20% (Part of ESE)	Includes viva, skill demonstration, and clinical diabetes case handling	
Dissertation/Research Project (Final Year)	Mandatory	Evaluated in the final year by internal & external examiners	
Clinical Internship/Training in Diabetes Care Centers	Pass/Fail	Logbook-based evaluation with mentor review	

Marking System & Grading

Marks (%)	Grade	Grade Point (GPA/CGPA Equivalent)	Classification
90 - 100	O (Outstanding)	10	First Class with Distinction
80 - 89	A+ (Excellent)	9	First Class with Distinction
70 - 79	A (Very Good)	8	First Class
60 - 69	B+ (Good)	7	First Class
50 - 59	B (Satisfactory)	6	Second Class
<50 (Fail)	F (Fail)	0	Fail (Re-exam Required)

Pass Criteria:

- > Minimum 50% marks in each subject (Theory & Practical separately).
- > Aggregate of 55% required for progression to the next semester.
- > No more than two backlogs allowed for promotion to the final year.

Exam Pattern for Theory & Practical

A. Theory Examination Pattern

Total Marks: 100 (Converted to 40% for End-Semester Assessment) Duration: 3 Hours

Section	Que <mark>stion</mark> Type	No. of Questions	Marks per Question	Total Marks
Section A	Short Answer Type (SAQ)	1 <mark>0 (Attempt all)</mark>	2	20
Section B	Long Answer Type (LAQ)	5 (Attempt any 4)	10	40
Section C	Case-Based/Clinical Scenarios	3 (Attempt any 2)	15	30
Section D	MCQs/Objective Type	10 (Compulsory)	1	10
Total				100

Weightage:

- \blacktriangleright Radiation Physics & Dosimetry 40%
- Cellular & Molecular Effects of Radiation 30%
- > Research & Case Studies in Radiation Therapy -20%
- > Radiation Protection & Safety -10%

Passing Criteria: Minimum 50% (50/100 marks)

B. Practical Examination Pattern

Total Marks: 100 (Converted to 20% for End-Semester Assessment) **Duration:** 4–6 Hours

Component	Marks Distribution
Clinical Case Presentation & Radiation Safety Assessment	30
OSCE (Objective Structured Clinical Examination) – Skill Demonstration	25
Radiation Detection & Dosimetry Techniques	20
Lab-Based Examination (Radiation Exposure Measurement, Biological Effects Assessment)	15
Record Work (Logbook & Assignments)	10
Total	100

OSCE (Skill-based Assessment) includes stations on:

- Radiation Protection & Shielding Techniques
- Handling of Radiation Detection Devices (Geiger Counter, Dosimeters)
- Radioactive Material Handling & Safety Procedures
- Interpretation of Radiation Dose Reports & Biological Effects

Passing Criteria: Minimum 50% (50/100 marks) in practicals.

Recommended Books & E-Resources

Textbooks

- **With a set of the set**
- "Fundamentals of Radiation Biology" D.J. Brenner
- ''Introduction to Health Physics'' Herman Cember
- > "Radiation Protection and Dosimetry" Michael G. Stabin

E-Resources & Journals

- > International Atomic Energy Agency (IAEA) <u>www.iaea.org</u>
- > Journal of Radiation Research
- > International Journal of Radiation Oncology, Biology, Physics
- > WHO Guidelines on Radiation Safety

Career Opportunities after B.Sc. in Radiation Biology

- Radiation Safety Officer in Hospitals & Research Institutes
- Clinical Radiobiologist in Oncology & Nuclear Medicine
- Radiation Protection Specialist in Industrial & Medical Facilities
- Research Scientist in Radiation Effects & Genetic Damage
- Consultant in Environmental & Occupational Radiation Safety

